Technical Specifications for the Calcium Ion-Selective Electrode ELIT 8041

Introduction

The Calcium Ion-Selective Electrode has a solid-state PVC polymer matrix membrane. The electrode is designed for the detection of calcium ions (Ca^{+2}) in aqueous solutions and is suitable for use in both field and laboratory applications.

The Calcium Ion is a divalent cation .

One mole of ($\rm Ca^{+2}$) has a mass of 40.080 grams; 1000 ppm is 0.025 M Dissolve 2.769g anhydrous calcium chloride (CaCl2) in 1 litre water.

Physical Specifications

Length of body excl gold contact	130 mm
Length of body incl. gold contact	140 mm
Diameter of body	8 mm
DC resistance at 25° C	< 2.5 MOhm
Minimum feasible sample volume	5 ml

Chemical / Operational Specifications

Preconditioning / Standard solution	Normally 1000 ppm Ca^{+2} as $Ca Cl_2$	
(But see General Operating Instructions)		
Preconditioning time	at least 5 minutes	
Optimal pH range	pH 3.5 to pH 11	
Temperature range	0 to 50° C	
Recommended ISAB	4M KCL (add 2% v/v)	
Recommended reference electrode	Single junction (ELIT 001)	
Electrode slope at 25° C	$26\pm 3 \text{ mV/} \text{decade}$	
Concentration range	0.02 to 4,000 ppm (5x10-7 to 0.1 Molar)	
Response time	< 10 seconds	
(Defined as time to complete 90% of the change in potential after immersion in the new solution.)		
Potential drift (in 1000 ppm)	al drift (<i>in 1000 ppm</i>) $< 3 \text{ mV}/\text{day}(8 \text{ hours})$	

(Measured at constant temperature and with ISE and Reference Electrode continually immersed)

Interference

Only Al +3 has a strong interference on the Ca electrode, with a selectivity coefficient (SC) of 5 (ie five times more sensitive to Al +3 than to Ca +2).

The SC is the approximate apparent increase in the measured concentration caused by 1 unit of the interferent. Thus the likely effect of any interfering ion (% increase) can be calculated as

follows: ((expected concentration) x (SC) / (expected Ca concentration)) x 100.

Other ions have a small effect (SC in brackets), but these would only be significant if they were at least ten times more concentrated than the Ca ion.

Iron Fe+2 (0.02) Strontium (0.008), Barium (0.005) Copper (0.002), Sodium, (0.0005), Magnesium (0.0006), Potassium (0.00005), Ammonium (0.00003), Lithium (0.00001)

For more information, see: www.nico2000.net.